Analysis of Signal-to-Crosstalk Ratio Variations due to Four-Wave Mixing in Dense Wavelength Division Multiplexing Systems Implemented with Standard Single-Mode Fibers

Sait Eser KARLIK
1.005 274

Abstract


In this paper, variation of the signal-to-crosstalk ratio (SXR) due to effects of four-wave mixing (FWM) has been analyzed on center channels of 5-, 7-, 9-channel dense wavelength division multiplexing (DWDM) systems implemented with G.652 standard single-mode fibers (SSMFs) for 12.5 GHz, 25 GHz, 50 GHz and 100 GHz equal channel spacing values. Center channels on such systems are the most severely impacted channels by FWM. Therefore, results obtained are the worst-case values for the DWDM system performance and important for system design. Simulations have been performed for systems using three different commercially available SMFs having different design parameter values for chromatic dispersion, dispersion slope, nonlinearity coefficient and attenuation coefficient which are all in the scope of the G.652 Recommendation of Telecommunication Standardization Sector of International Telecommunication Union (ITU-T) for SSMFs. In those simulations, under the impact of FWM, variation of SXR with variations in input powers, channel spacings and link lengths have been observed. Simulation results display the combined effect of the optical fiber and system design parameters on FWM performance of DWDM systems and give important clues for not only long-haul but also access network implementations of DWDM systems.


Keywords


Four Wave Mixing; Dense Wavelength Division Multiplexing System; Optical Fiber; Signal-to-Crosstalk Ratio

Full Text:

PDF


DOI: http://dx.doi.org/10.17482/uujfe.96713

References


Abd, H.J., Al-Mansoori, M.H., Din, N.M., Abdullah, F. and Fadhil, H.A. (2014) Priority-based parameter optimization strategy for reducing the effects of four-wave mixing on WDM system, Optik-International Journal for Light and Electron Optics, 125(1), 25-30. doi:10.1016/j.ijleo.2013.06.002

Agrawal, G.P. (2005) Nonlinear Fiber Optics, Academic Press, USA.

Bi, M., Xiao, S., Li, J. and He, H. (2014) A bandwidth-efficient channel allocation scheme for mitigating FWM in ultra-dense WDM-PON, Optik-International Journal for Light and Electron Optics, 125(8), 1957-1961. doi:10.1016/j.ijleo.2013.11.004

Bogoni, A and Poti, L. (2004) Effective channel allocation to reduce inband FWM crosstalk in DWDM transmission systems, IEEE Journal of Selected Topics in Quantum Electronics, 10(2), 387-392. doi:10.1109/JSTQE.2004.825952

Handa, M., Singh, M.L. and Singh, R. (2014) Performance analysis of optical WDM system based on unequal spaced channel allocation (USCA) scheme, Optik-International Journal for Light and Electron Optics, 125(16), 4262-4264. doi:10.1016/j.ijleo.2014.04.012

Harboe, P.B., da Silva, E. and Souza, J.R. (2008) Analysis of FWM penalties in DWDM systems based on G.652, G.653, and G.655 optical fibers, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2(12), 2674-2680.

Hiçdurmaz, B., Temurtaş, H., Karlık, S.E. and Yılmaz, G. (2013) A novel method degrading the combined effect of FWM and ASE noise in WDM systems containing in-line optical amplifiers, Optik-International Journal for Light and Electron Optics, 124(19), 4064-4071. doi:10.1016/j.ijleo.2012.12.071

ITU-T Recommendation G.652 (2009) Characteristics of a single-mode optical fibre and cable, ITU, Geneva.

ITU-T Recommendation G.671 (2002) Transmission characteristics of optical components and subsystems, ITU, Geneva.

ITU-T Recommendation G.694.1 (2012) Spectral grids for WDM applications: DWDM frequency grid, ITU, Geneva.

Kaler, R. and Kaler, R.S. (2012) Investigation of four wave mixing effect at different channel spacing, Optik-International Journal for Light and Electron Optics, 123(4), 352-356. doi:10.1016/j.ijleo.2011.01.017

Karlık, S.E. (2016) Analysis of the four-wave mixing impact on the most heavily affected channels of dense and ultra-dense wavelength division multiplexing systems using non-zero dispersion shifted fibers, Optik-International Journal for Light and Electron Optics, 127(19), 7469-7486. doi:10.1016/j.ijleo.2016.05.077

Kaur, G. and Singh, M.L. (2009) Effects of four-wave mixing in WDM optical fibre systems, Optik-International Journal for Light and Electron Optics, 120(6), 268-273. doi:10.1016/j.ijleo.2007.08.007

Maeda, M.W., Sessa, W.B., Way, W.I., Yi-Yan, A., Curtis, L., Spicer, R. and Laming, R.I. (1990) The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems, Journal of Lightwave Technology, 8(9), 1402-1408. doi:10.1109/50.59171

Nakajima, K., Ohashi, M., Miyajima, Y. and Shiraki, K. (1997) Assessment of dispersion varying fibre in WDM system, Electronics Letters, 33(12), 1059-1060. doi:10.1049/el:19970699

Noshad, M. and Rostami, A. (2012) FWM minimization in WDM optical communication systems using the asymmetrical dispersion-managed fibers, Optik-International Journal for Light and Electron Optics, 123(9), 758-760. doi:10.1016/j.ijleo.2011.06.022

Rostami, A., Rahbari, J. and Andalib, A. (2013) Investigation of power penalty in WDM systems for dispersion managed fibers, Optik-International Journal for Light and Electron Optics, 124(15), 2072-2075. doi:10.1016/j.ijleo.2012.06.065

Schneider, T. (2004) Nonlinear Optics in Telecommunications, Springer-Verlag, Germany.

Singh, A., Sharma, A.K. and Kamal, T.S. (2009) Investigation on modified FWM suppression methods in DWDM optical communication system, Optics Communications, 282(3), 392-395. doi:10.1016/j.optcom.2008.10.014

Tkach, R.W., Chraplyvy, A.R., Forghieri, F., Gnauck, A.H. and Deroiser, R.M. (1995) Four-photon mixing and high-speed WDM systems, Journal of Lightwave Technology, 13(5), 841-849. doi:10.1109/50.387800

Wehmann, C.F., Fernandes, L.M., Sobrinho, C.S., Lima, J.L.S., da Silva, M.G., de Almeida, E.F., Medeiros Neto, J.A. and Sombra, A.S.B. (2005) Analysis of the four wave mixing effect (FWM) in a dispersion decreasing fiber (DDF) for a WDM system, Optical Fiber Technology, 11(3), 306-318. doi:10.1016/j.yofte.2005.01.003




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.