Hydrothermal Treatment of Cellulose in Hot-Pressurized Water for the Production of Levulinic Acid

1.795 1.014


In this paper, hot-pressurized water, operating above boiling point and below critical point of water (374. 15 °C and 22.1 MPa), was used as a reaction medium for the decomposition of cellulose to high-value chemicals, such levulinic acid. Effects of reaction temperature, pressure, time, external oxidant type and concentration on the cellulose degradation and product distribution were evaluated. In order to compare the cellulose decomposition and yields of levulinic acid, experiments were performed with and without addition of oxidizing agents (H2SO4 and H2O2). Analysis of the liqueur was monitored by HPLC and GC-MS at different temperatures (150 - 280 °C), pressures (5-64 bars) and reaction times (30 - 120 mins). Levulinic acid, 5-HMF and formic acid were detected as main products. 73% cellulose conversion was achieved with 38% levulinic acid yield when 125 mM of sulfuric acid was added to the reaction medium at 200 °C for 60 min reaction time.


Cellulose; levulinic acid; 5-HMF; hot-pressurized water

Full Text:



Akiya, N. and Savage, P. E. (2002) Roles of water for chemical reactions in high-temperature water, Chem. Rev., 102, 2725-2750. doi: 10.1021/cr000668w

Asghari, F. S.; Yoshida H. (2010) Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions Carbohydr. Res., 345, 124-131. doi:10.1016/j.carres.2009.10.006

Bicker, M.; Endres, S.; Ott, L.; Vogel, H. (2005) Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production, J. Molecular Catal. A: Chem., 239, 151-157. doi:10.1016/j.molcata.2005.06.017

Cardenas-Toro, F. P.; Alcazar-Alay, S.C.; Forster-Carneiro, T.; Angela, M.; Meireles, A. (2014) Obtaining oligo- and monosaccharides from agroindustrial and agricultural residues using hydrothermal treatments, Food Chem., 4, 123-139. doi: 10.5923/j.fph.20140403.08

Chan, Y. H.; Yusup S.; Quitain A. T.; Uemura Y.; Sasaki M. (2014) Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction, J. Supercritical Fluids, 95, 407-412. doi: 10.1016/j.supflu.2014.10.014

Dinjus E. and Kruse A (2004) Hot compressed water—a suitable and sustainable solvent and reaction medium?, J Phys.Condens. Mat. 16, 1161–1169, doi: 10.1088/0953-8984/16/14/026

Ehara, K. and Saka, S. (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments, J. Wood Sci., 51, 148-153. doi:10.1007/s10086-004-0626-2

Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J. (2006), A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid, Green Chem., 8, 701-709, doi: 10.1039/B518176C

Horvat, J.; Klaic, B.; Metelko, B.; Sunjic, V. (1985) Mechanism of levulinic acid formation, Tetrahedron Lett., 26, 17, 2111-2114. doi:10.1016/S0040-4039(00)94793-2

Kruse, A.; Henningsen, T.; Sinag, A.; Pfeiffer, J. (2003) Biomass gasification in supercritical water: Influence of the dry matter content and the formation of phenols, Ind. Eng. Chem. Res., 42, 3711-3717. doi: 10.1021/ie0209430

Kruse, A. and Gawlik A. (2003) Biomass conversion in water at 330-410 degrees C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways, Ind. & Eng. Chem. Res., 42, 2, 267-279. doi:10.1021/ie0202773

Pourali, O.; Asghari, F.S.; Yoshida, H. (2009) Sub-critical water treatment of rice bran to produce valuable materials, Food Chem., 115, 1-7. doi:10.1016/j.foodchem.2008.11.099

Promdej, C., and Matsumura Y. (2011), Temperature effect on hydrothermal decomposition of glucose in sub- and supercritical water, Ind. & Eng. Chem. Res. 50, 14, 8492-8497. doi: 10.1021/ie200298c

Rackemann, D. W., and Doherty W. O. S. (2011) The conversion of lignocellulosics to levulinic acid, Biofuels Bioproducts & Biorefining-Biofpr 5, 2, 198-214. doi: 10.1002/bbb.267

Saito, T.; Sasaki, M; Kawanabe, H.; Yoshino, Y.; Goto, M. (2009) Subcritical water reaction behavior of D-glucose as a model compound for biomass using two different continuous-flow reactor configurations, Chem. Eng. Technol., 32, 527-533. doi: 10.1002/ceat.200800537

Sasaki, M.; Yamamoto, K.; Goto, M. (2007) Reaction mechanism and pathway for the hydrothermal electrolysis of organic compounds, J. Mater. Cycles Waste Manage., 9, 40-46. doi: 10.1007/s10163-006-0170-9

Savage, P. E. (1999) Organic chemical reactions in supercritical water, Chem. Rev., 99, 603-621. doi: 10.1021/cr9700989

Rosatella, A.A.; Simeonov, S.P.; Fradea, R.F.M.; Carlos A. M. A. (2011) 5 – Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem., 13, 754-793. doi:10.1039/C0GC00401D

Takeuchi, Y.; Jin F. M.; Tohji K.; Enomoto H. (2008) Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances, J. Mat. Scien. 43, 7, 2472-2475. doi:10.1007/s10853-007-2021-z

Thompson, D. R. and Grethlein, H. E. (1979) Design and evaluation of a plug flow reactor for acid hydrolysis of cellulose, Ind. End. Chem. Prod. Res. Dev., 18, 166-169. doi:10.1021/i360071a003

Toor, S. S.; Rosendahl, S.; Rudolf, A. (2011) Hydrothermal liquefaction of biomass: A review of subcritical water technologies, Energy, 36, 2328-2342. doi:10.1016/j.energy.2011.03.013

Williams, P. T. and Onwudili, J. (2006) Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomass waste, Energy & Fuels, 20, 1259-1265. doi: 10.1021/ef0503055

Yakaboylu, O.; G. Yapar; M. Recalde; J. Harinck; K. G. Smit; E. Martelli; W. de Jong. (2015) Supercritical water gasification of biomass: An integrated kinetic model for the prediction of product compounds, Industrial & Engineering Chemistry Research, 54, 33, 8100-8112. doi: 10.1021/acs.iecr.5b02019

Zeng, W.; Cheng, D.; Zhang, H.; Chen, F.; Zhan, X. (2010) Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions, Reac. Kinet. Mech. Cat., 100, 377-384. doi: 10.1007/s11144-010-0187-x

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.