Computer-Aided Detection of Brain Tumors Using Morphological Reconstruction

570 155


Computer aided detection (CAD) systems helps the detection of abnormalities in medical images using advanced image processing and pattern recognition techniques. CAD has advantages in accelerating decision-making and reducing the human error in detection process. In this study, a CAD system is developed which is based on morphological reconstruction and classification methods with the use of morphological features of the regions of interest to detect brain tumors from brain magnetic resonance (MR) images. The CAD system consists of four stages: the preprocessing, the segmentation, region of interest specification and tumor detection stages. The system is evaluated on REMBRANDT dataset with 497 MR image slices of 10 patients. In the classification stage the performance of CAD has achieved accuracy of 93.36% with Decision Tree Algorithm, 94.89% with Artificial Neural Network (Multilayer Perceptron), 96.93% with K-Nearest Neighbour Algorithm and 96.93% with  Meta-Learner (Decorate) Algorithm. These results show that the proposed technique is effective and promising for detecting tumors in brain MR images and enhances the classification process to be more accurate. The using morphological reconstruction method is useful and adaptive than the methods used in other CAD applications.


Biomedical image processing; Image classification; Morphological reconstruction; Tumor Detection; computer aided detection.

Full Text:



Abdel-Maksoud, E., Elmogy, M. and Al-Awadi, R. (2015) Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal, 16(1), 71-81. doi: 10.1016/j.eij.2015.01.003

Akram, M. U. and Usman, A. (2011) Computer aided system for brain tumor detection and segmentation. Computer Networks and Information Technology (ICCNIT), 2011 International Conference.

Ambrosini, R. D., Wang, P. and O'Dell, W. G. (2010) Computer‐aided detection of metastatic brain tumors using automated three‐dimensional template matching. Journal of Magnetic Resonance Imaging, 31(1), 85-93.

Arimura, H., Magome, T., Yamashita, Y. and Yamamoto, D. (2009) Computer-aided diagnosis systems for brain diseases in magnetic resonance images. Algorithms, 2(3), 925-952. doi: 10.3390/a2030925

Capelle, A.-S., Alata, O., Fernandez, C., Lefèvre, S. and Ferrie, J. (2000) Unsupervised segmentation for automatic detection of brain tumors in MRI. Image Processing, 2000. Proceedings. 2000 International Conference.

Castleman, K. R. (1995) Digital Image Processing: Prentice Hall.

Chan, T. (2007) Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain. Computerized Medical Imaging and Graphics, 31(4), 285-298. doi: 10.1016/j.compmedimag.2007.02.010

Clark, M. C., Hall, L. O., Goldgof, D. B., Velthuizen, R., Murtagh, F. R. and Silbiger, M. S. (1998) Automatic tumor segmentation using knowledge-based techniques. Medical Imaging, IEEE Transactions on, 17(2), 187-201. doi: 10.1109/42.700731

Dougherty, G. (2009) Digital image processing for medical applications: Cambridge University Press.

El-Dahshan, E.-S. A., Hosny, T. and Salem, A.-B. M. (2010) Hybrid intelligent techniques for MRI brain images classification. Digital Signal Processing, 20(2), 433-441. doi: 10.1016/j.dsp.2009.07.002

El-Sayed, A., Mohsen, H. M., Revett, K. and Salem, A.-B. M. (2014) Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert Systems with Applications, 41, 5526-5545. doi: 10.1016/j.eswa.2014.01.021.

Gonzalez, R. C., Woods, R. E. and Eddins, S. L. (2004) Digital image processing using MATLAB: Pearson Education India.

Gopal, N. N. and Karnan, M. (2010) Diagnose brain tumor through MRI using image processing clustering algorithms such as Fuzzy C Means along with intelligent optimization techniques. Computational Intelligence and Computing Research (ICCIC), 2010 IEEE International Conference.

Harati, V., Khayati, R. and Farzan, A. (2011) Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Computers in biology and medicine, 41(7), 483-492. doi: 10.1016/j.compbiomed.2011.04.010

Haykin, S. and Lippmann, R. (1994) Neural Networks, A Comprehensive Foundation. International Journal of Neural Systems, 5(4), 363-364.

Hellman, M. E. (1970) The nearest neighbor classification rule with a reject option. IEEE Transactions on Systems Science and Cybernetics, 6(3), 179-185. doi: 10.1109/TSSC.1970.300339

Jayachandran, A. and Dhanasekaran, R. (2013) Brain Tumor Detection and Classification of MR Images Using Texture Features and Fuzzy SVM Classifier. Research Journal of Applied Sciences, Engineering and Technology, 6(12), 2264-2269.

Khotanlou, H., Colliot, O., Atif, J. and Bloch, I. (2009) 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets and Systems, 160(10), 1457-1473. doi: 10.1016/j.fss.2008.11.016

Kittler, J. and Illingworth, J. (1986) Minimum error thresholding. Pattern recognition, 19(1), 41-47.

Li, H., Wang, Y., Liu, K. R., Lo, S.-C. and Freedman, M. T. (2001) Computerized radiographic mass detection. I. Lesion site selection by morphological enhancement and contextual segmentation. IEEE Transactions on Medical Imaging, 20(4), pp.289-301.20(4), 289-301. doi:10.1109/42.921478

Lippmann, R. P. (1989) Pattern classification using neural networks. Communications Magazine, IEEE, 27(11), 47-50. doi: 10.1109/35.41401

Logeswari, T. and Karnan, M. (2010) An enhanced implementation of brain tumor detection using segmentation based on soft computing. Signal Acquisition and Processing, 2010. ICSAP'10. International Conference. doi: 10.1109/ICSAP.2010.55

Manohar, M. and Ramapriyan, H. (1989) Connected component labeling of binary images on a mesh connected massively parallel processor. Computer vision, graphics, and image processing, 45(2), 133-149. doi: 10.1016/0734-189X(89)90129-1

Mehmood, I., Ejaz, N., Sajjad, M. and Baik, S. W. (2013) Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation. Computers in biology and medicine, 43(10), 1471-1483.doi:10.1016/j.compbiomed.2013.07.001

Mei, X., Zheng, Z., Bingrong, W. and Guo, L. (2009) The edge detection of brain tumor. Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference.

Melville, P., and Mooney, R. J. (2003). Constructing diverse classifier ensembles using artificial training examples. In IJCAI (Vol. 3, pp. 505-510).

Mohsen, H., El-Dahshan, E.-S. and Salem, A. (2012) A machine learning technique for MRI brain images. Informatics and Systems (INFOS), 2012 8th International Conference.

Nabizadeh, N. and Kubat, M. (2015) Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Computers & Electrical Engineering, 45, 286-301. doi:10.1016/j.compeleceng.2015.02.007

Nagashima, H. and Harakawa, T. (2011) Computer‐aided diagnostic (CAD) scheme by use of contralateral subtraction technique. Application to detection of acute cerebral infarctions in brain computed tomography (CT). Electronics and communications in Japan, 94(2), 32-41.

Naik, J. and Patel, S. (2014) Tumor Detection and Classification using Decision Tree in Brain MRI. International Journal of Computer Science and Network Security, 14(6), 87.

Ozekes, S. and Camurcu, A. Y. (2006) Rule based detection of lung nodules in ct images. IU-Journal of Electrical & Electronics Engineering, 6(1), 61-67.

Pal, N. R. and Pal, S. K. (1993) A review on image segmentation techniques. Pattern recognition, 26(9), 1277-1294. doi: 10.1016/0031-3203(93)90135-J

Pitas, I. (2000) Digital image processing algorithms and applications: John Wiley & Sons.

Quinlan, J. R. (2014) C4. 5: programs for machine learning: Elsevier.

Ronse, C. and Devijver, P. A. Connected Components in Binary Images: the Detection Problem, 1984: Research Studies Press/John Wiley & Sons Inc., New York, NY, USA.

Rulaningtyas, R. and Ain, K. (2009) Edge detection for brain tumor pattern recognition. Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), 2009 International Conference. doi: 10.1109/ICICI-BME.2009.5417299

Ulku, E. E. and Camurcu, A. Y. (2013) Computer aided brain tumor detection with histogram equalization and morphological image processing techniques. In Electronics, Computer and Computation (ICECCO), 2013 International Conference on. on, pp. 48-51. IEEE, doi: 10.1109/ICECCO.2013.6718225

Vannier, M. W. and Haller, J. W. (1998) Biomedical image segmentation. Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference.doi: 10.1109/ICIP.1998.723309

Vrji, K. and Jayakumari, J. (2011) Automatic detection of brain tumor based on magnetic resonance image using CAD System with watershed segmentation. Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), 2011 International Conference.

Wu, M.-N., Lin, C.-C. and Chang, C.-C. (2007) Brain tumor detection using color-based k-means clustering segmentation. Intelligent Information Hiding and Multimedia Signal Processing, 2007. IIHMSP 2007. Third International Conference.doi: 10.1109/IIHMSP.2007.4457697

Xuan, X. and Liao, Q. (2007) Statistical structure analysis in MRI brain tumor segmentation. Image and Graphics, 2007. ICIG 2007. Fourth International Conference.

Zarandi, M. H. F., Zarinbal, M., Zarinbal, A., Turksen, I. and Izadi, M. (2010) Using type-2 fuzzy function for diagnosing brain tumors based on image processing approach. IEEE International Conference on Fuzzy Systems.doi: 10.1109/FUZZY.2010.5584469

Zikopoulos, P., Parasuraman, K., Deutsch, T., Giles, J. and Corrigan, D. (2012) Harness the power of big data The IBM big data platform: McGraw Hill Professional.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.