An Investigation of Antibacterial and Surface Properties of the Germanium Nano Layer Deposited on Organic Substrates

Zerrin PAT
1.586 402

Abstract


The element germanium is an important material for the solid state device fabrication and antibacterial applications. It has been widely used for the optoelectronic applications. Polyethylene terephthalate (PET) materials is a organic substrate materials with high transparency. It is used to in flexible and bendable electronic device in present and future. In this study, antibacterial and surface properties of the germanium layer deposition with nano thicknesses were investigated. Germanium material was successfully deposited on PET substrate and antibacterial properties against to gram positive  Staphylococcus aureus (ATCC29213)  and gram negative Escherichia coli (ATCC11775) bacterias were tested. Germanium layer thicknesses was measured as 200 nm and grain size was calculated about 40 nm. Crystal formations of the deposited layer were determined as  (022), (133) and (224) formation. According to to XRD and EDX analysis, it found that deposited germanium layer was not contain any impurity and  chemical bonds to atoms of PET substrate. Moreover, surface analysis of deposited PET sample were realized by scanning electron microscopy and atomic force microscopy. Furthermore, surface roughness, rain height distribution, contact angle, transparency and absorbance values were determined in this paper.

Keywords


Germanium; Polyethylene terephthalate; Antibacterial; Surface Properties

Full Text:

PDF (Türkçe)


DOI: http://dx.doi.org/10.17482/uujfe.89294

References


Amtul, Z., Follmer, C., Mahboob, S., Mazhar, M., Khan, K. M., Siddiqui, R. A., Muhammad S., Kazmi S.A., Choudhary, M. I. (2007) Germa-γ-lactones as novel inhibitors of bacterial urease activity. Biochemical and biophysical research communications, 356(2), 457-463. doi:10.1016/j.bbrc.2007.02.158.

Boks, N. P., Norde, W., van der Mei, H. C., Busscher, H. J. (2008) Forces involved inbacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology, 154 (10), 3122-3133.doi: 10.1099/mic.0.2008/018622-0.

Campanile F, Bongiorno D, Perez M , Mongelli G , Sessa L , Benvenuto S, Gona S, AMCLI -S. aureus Survey Participants, Varaldo P.E. , Stefani S. (2015) Epidemiology of Staphylococcus aureus in Italy: First nationwide survey 2012, Journal of Global Antimicrobial Resistance, 3, 247–254. doi: 10.1016/j.jgar.2015.06.006.

Chiu, S. J., Lee, M. Y., Chou, W. G., & Lin, L. Y. (2003) Germanium oxide enhances the radiosensitivity of cells, Radiation Research, 159(3), 391-400.

Chomarat, M. (2000) Resistance of bacteria in urinary tract infections, International Journal of Antimicrobial Agents, 16, 483-487. doi: 10.1016/S0924-8579(00)00281-8.

European Centre for Disease Prevention and Control (ECDC). Annual epidemiological report. Reporting on 2011 surveillance data and 2012 epidemic intelligence data.

Foxman, B. (1990) Recurring urinary tract infection: incidence and risk factors, American Journal of Public Health, 80, 331-333. doi: 10.2105/AJPH.80.3.331.

Joshi, L. P., Risal, L., Shrestha, S. P. (2016) Effects of Concentration of Triethanolamine and Annealing Temperature on Band Gap of Thin Film of Tin Sulphide Prepared by Chemical Bath Deposition Method, Journal of Nepal Physical Society, 3(1), 1-5.

Kay, D., Crowther, J., Stapleton, C.M., Wyer, M.D., Fewtrell, L., Edwards, A., Francis, C.A., McDonald, A.T., Watkins, J., Wilkinson, J. (2008) Faecal indicator organism concentrations in sewage and treated effluents, Water Research, 42, 442–454. doi: 10.1016/j.watres.2007.07.036.

Khalid, A. Q., AlJohny, B. O., Wainwright, M. (2014) Antibacterial effects of pure metals on clinically important bacteria growing in planktonic cultures and biofilms. African Journal of Microbiology Research, 8(10), 1080-1088. doi: 10.5897/AJMR2013.5893.

Knetsch, M. L., Koole, L. H. (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers, 3(1), 340-366. doi:10.3390/polym3010340.

Noormandi, A., Dabaghzadeh F. (2015) Effects of green tea on Escherichia coli as a uropathogen, Journal of Traditional and Complementary Medicine, 5, 15-20. doi: 10.1016/j.jtcme.2014.10.005.

Oliveira, R., Azeredo, J., Teixeira, P., & Fonseca, A. P. (2001) The role of hydrophobicity in bacterialadhesion, Hydrophobicity and Adhesion, 11-16.

Özen, S., Şenay, V., Pat, S., Korkmaz, Ş. (2015) AlGaAs film growth using thermionic vacuum arc (TVA) and determination of its physical properties, The European Physical Journal Plus, 130(6), 1-6. doi: 10.1140/epjp/j2015-15108-3.

Özen, S., Şenay, V., Pat, S., Korkmaz, Ş. (2015) Investigation on the morphology and surface free energy of the AlGaN thin film, Journal of Alloys and Compounds, 653, 162-167. doi: 10.1016/j.jallcom.2015.08.225.

Pat, S., Korkmaz, Ş., Özen, S., Şenay, V. (2016) Heavily carbon doped GaAs nanocrystalline thin film deposited by thermionic vacuum arc method, Journal of Alloys and Compounds, 657, 711-716. doi:10.1016/j.jallcom.2015.10.150.

Pour, S. N., Ghugare, S. V., Wiens, R., Gough, K., Liu, S. (2015) Controlled in situ formation of polyacrylamide hydrogel on PET surface via SI-ARGET-ATRP for wound dressings, Applied Surface Science, 349, 695-704. doi:10.1016/j.apsusc.2015.04.181.

Reygaert, W., Jusufi I. (2013) Green tea as an effective antimicrobial for urinary tract infections caused by. Escherichia coli, Frontiers in Microbiology, 4, 162, 1-4. doi: 10.3389/fmicb.2013.00162.

Sahoo, S. (2010) Socio-ethicalissues and nanotechnology development: perspectives from India, 10th IEEE Conference on Nanotechnology (IEEE-NANO), 1205-1210. doi: 10.1109/NANO.2010.5697887.

Seil, J. T., Webster, T. J. (2012) Antimicrobial applications of nanotechnology: methods and literature. International Journal of Nanomedicine, 7, 2767-2781. doi: 0.2147/IJN.S24805

Şenay, V., Özen, S., Pat, S., & Korkmaz, Ş. (2016) Optical, morphological and mechanical properties of an Al–Al2O3 nanocomposite thin film grown by thermionic vacuum arc. Optik-International Journal for Light and Electron Optics, 127(6), 3383-3387. doi: 10.1016/j.ijleo.2015.12.109.

Sharifahmadian, O., Salimijazi, H.R., Fathi, M.H., Mostaghimi, J. and Pershin, L. (2013) Study of the Antibacterial Behavior of Wire Arc Sprayed Copper Coatings, Journal of Thermal Spray Technology, 22, 371-379. doi: 10.1007/s11666-012-9842-2.

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan H., Mohamad, D. (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano-Micro Letters, 7(3), 219-242. doi: 10.1007/s40820-015-0040-x.

Sudha, S., & Vinodhini, J. (2011) Antibacterial properties of organic germanium against some human pathogens. International Journal of Pharma and Bio Sciences, 2(1), 854-859.

Xinpeng, L., Xinkai, X., Richard, M. P. (2015) A study of the surface charging properties of a standard strain of Escherichia coli (ATCC 11775) in aqueous solutions, Colloids and Surfaces B: Biointerfaces, 135, 811–816. doi: 10.1016/j.colsurfb.2015.08.048.

Yasuyuki,M., Kunihiro, K., Kurissery,S., Kanavillil,N., Sato,Y., Kikuchi,Y. (2010) Antibacterial properties of nine puremetals: a laboratory study using Staphylococcus aureus and Escherichiacoli. Biofouling, 26(7),851-858. doi: 10.1080/08927014.2010.527000.

Zalesak, J., Bartosik, M., Daniel, R., Mitterer, C., Krywka, C., Kiener, D., Keckes, J. (2016) Cross-sectional structure-property relationship in a graded nanocrystalline Ti 1− x Al x N thin film, Acta Materialia, 102, 212-219. doi:10.1016/j.actamat.2015.09.007.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.