Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

749 259


The aim of this study to investigate the effects of different sterilization methods on electrospun polyester. Ethylene oxide (EO), autoclave (AU) and ultraviolet (UV) sterilization methods were applied to electrospun fibers produced from polyethylene terephthalate (PET) solutions with concentrations of 10, 15 and 20 wt.%. The surface characteristics of the fibers were examined by scanning electron microscope (SEM), atomic force microscope (AFM), surface pore size studies and contact angle measurements. Differential scanning calorimetry (DSC) tests were carried out to characterize the thermal properties. Fourier Transform Infrared spectroscopy (FTIR) tests were performed to analyze the micro structural properties. SEM studies showed that different sterilization methods made significant changes on the surfaces of the fibers depending on the PET concentration. Although the effects were decreased with the increasing polymer concentration, the fiber structure was damaged especially with the EO sterilization. The contact angle values were decreased with the UV sterilization method the most.


Electrospun fiber; Polyester; Sterilization; Characterization

Full Text:


DOI: http://dx.doi.org/10.17482/uujfe.04230


Badylak, S. F., Freytes, D. O., Gilbert, T.W. (2009). Extracellular matrix as a biological scaffold material: Structure and function Acta Biomaterialia, 5(1), 1-13.doi: 10.1016/j.actbio.2008.09.013

Block, S. S. (2001). Disinfection, Sterilization and Preservation (Lippincott Williams, Wilkins, Philadelphia, USA. p. 695. ISBN:0-683-30740-1

Chen, Z., Hay, J. N., Jenkins, M. J., (2013). The Thermal Analysis of Poly (ethylene terephthalate) by FTIR spectroscopy, Thermochimica Acta, 552, 123-130. doi: http://dx.doi.org/10.1016/j.tca.2012.11.002

Cho, D. H., Yu, W. R., Youk, J. H., Yoo, J. H., (2007). Formation of Micro-Crystals in Poly(Ethylene Terephthalate) Fiber by A Short Heat Treatment and Their Influence on the Mechanical Properties, European Polymer Journal, 43(8), 3562-3572. doi: http://dx.doi.org/10.1016/j.eurpolymj.2007.05.036

Costa, L., Luda, M. P., Trossarelli, L., Brach del Prever, E. M., Crova M., Gallinaro P., (1998). Oxidation in Orthopaedic UHMWPE Sterilized by Gamma-Radiation and Ethylene Oxide, Biomaterials, 19(7-9), 659-668. doi:10.1016/S0142-9612(97)00160-9

Darmanin, T., Guittard, F., (2013). Wettability of Conducting Polymers: From Superhydrophilicity to Superoleophobicity, Progress in Polymer Science, 39, 656-682. doi: 10.1016/j.progpolymsci.2013.10.003

De Clerck, K., Rahier, H., Van Mele, B., Kiekens, P., (2003). Thermal Properties Relevant to the Processing of PET Fibers, J Appl Polym Sci, 89, 3840-3849. doi:10.1002/app.12543

Deitzel, J. M, Kleinmeyer, J., Harris, D., Tan, N. C. B., (2001). The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles, Polymer, 42, 261-272. doi: 10.1007/s11595-012-0438-y

Dimitrievska, S., Petit, A., Doillon, C. J., Epure, L., Ajji, A., Yahia, L., Bureau, M. N., (2011). Effect of Sterilization on Non-Woven Polyethylene Terephthalate Fiber Structures for Vascular Grafts. Macromol Biosci, 11,13-21. doi: 10.1002/mabi.201000268

Doshi, J., Reneker D. H., (1993). Electrospinning Process and Application of Electrospun Fibers, J Electrostat, 35, 151-160. doi: 10.1109/IAS.1993.299067

Duzyer, S., Hockenberger, A., Zussman, E., (2011). Characterization of Solvent-Spun Polyester Nanofibers, J App Polym Sci, 120, 759-769. doi: 10.1002/app.33092

Fong, H., Chun, I., Reneker, D. H., (1999). Beaded Nanofibers Formed During Electrospinning, Polymer, 40, 4585-4592. doi: http://dx.doi.org/10.1016/S0032-3861(99)00068-3

Greenfeld, I., Zussman, E., (2013). Polymer Entanglement Loss in Extensional Flow: Evidence From Electrospun Short Nanofibers, J Polym Sci Part B:Polymer Physics, 51, 1377-1391. doi: 10.1002/polb.23345

Greiner, A., Wendorrf, J. H., (2007). Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers, Angew Chem Int Ed, 46, 5670-5703. doi: 10.1002/anie.200604646

Hayashi, N., Guan, W., Tsutsui, S., Tomari, T., Hanada, Y., (2006). Sterilization of Medical Equipment Using Radicals Produced by Oxygen/Water Vapor RF Plasma, Jpn J Appl Phys, 45, 8358-8363. doi:10.1143/JJAP.45.8358

Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A. P., Rofail, F., Smith, H., Wu, B. M., Shemin, R., Beygui, R E., MacLellan, W. R., (2008). Three-Dimensional electrospun ECM-based hybrid scaffolds for Cardiovascular Tissue Engineering , Biomaterials, 29, 2907 -2914. doi: http://dx.doi.org/10.1016/j.biomaterials.2008.03.034

Holy, C. E., Cheng, C., Davies, J. E., Shoichet, M. S., (2000). Optimizing the Sterilization of PLGA Scaffolds for Use in Tissue Engineering, Biomaterials, 22, 25-31. doi: 10.1016/S0142-9612(00)00136-8

Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna,. S., (2003). A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites, Composites Science and Technology, 63, 2223-2253. doi: 10.1016/S0266-3538(03)00178-7

Khansari, S., Duzyer, S., Sinha-Ray, S., Hockenberger, A., Yarin, A. L., Pourdeyhimi, B., (2013). Two-Stage Desorption-Controlled Release of Fluorescent Dye and Vitamin From Solution-Blown and Electrospun Nanofiber Mats Containing Porogens, Mol Pharm, 10 4509-4526. doi: 10.1021/mp4003442

Li, C., Vepari, C., Jina, H. J., Kima, H. J, Kaplan, D. L., (2006). Electrospun Silkbmp-2 Scaffolds for Bone Tissue Engineering Biomaterials, 27, 3115-3124. doi: http://dx.doi.org/10.1016/j.biomaterials.2006.01.022

Lopes-da-Silva, J. A., Veleirinho, B., Delgadillo, I., (2009). Preparation and Characterization of Electrospun Mats Made of PET/Chitosan Hybrid Nanofibers. J Nanosci Nanotechnol, 9, 3798-3804. doi: https://doi.org/10.1166/jnn.2009.NS70

Marreco, P. R., Moreira, P., Genari, S. C., Moraes, A. M., (2004). Effects of Different Sterilization Methods on the Morphology, Mechanical Properties and Cytotoxicity of Chitosan Membranes Used as Wound Dressings. , J Biomed Mater Res B Appl Biomater, 71, 268-277. doi: 10.1002/jbm.b.30081

Mendes, G. C. C., Brandão, T. R. S., Silva, C. L. M., (2007). Etylene Oxide Sterilization of Medical Devices, American Journal of Infection Control, 35, 574-581. doi: http://dx.doi.org/10.1016/j.ajic.2006.10.014

Nair, P. D., Sreenivasan K., (1984). Effect of Steam Sterilization on Polyethylene Terephthalate, Biomaterials, 5, 305-306. doi: 10.1016/0142-9612(84)90079-6

Nair, P.D., (1995). Currently Practised Sterilization Methods--Some inadvertent Consequences. J Biomater Appl, 10, 121-135. doi:10.1177/088532829501000203

Rai, R., Tallawi, M., Roether, J. A., Detsch, R., Barbani, N., Rosellini, E., Kaschta, J., Schubert, D. W., Boccaccini, A. R., (2013). Sterilization Effects on The Physical Properties and Cytotoxicity of Poly (Glycerol Sebacate), Materials Letters, 105, 32-35. doi: http://dx.doi.org/10.1016/j.matlet.2013.04.024

Rutala, W. A., Weber, D. J., (2001). New Disinfection and Sterilization Methods, Emerg Infect Dis, 7, 348 –353. doi: 10.3201/eid0702.700348

Shenoy, S. L., Bates, W. D., Frisch, H. L., Wnek, G. E., (2005). Role of Chain Entanglements on Fiber Formation During Electrospinning of Polymer Solutions: Good Solvent, Non-Specific Polymer-Polymer İnteraction Limit, Polymer, 46, 3372-384. doi: 10.1016/j.polymer.2005.03.011

Sill, T. J., Recum, H A, (2008). Electrospinning: Applications in Drug Delivery and Tissue Engineering, Biomaterials, 29, 1989-2006. doi:10.1016/j.biomaterials.2008.01.011

Tan, S. H., Inai, R., Kotaki, M., Ramakrishna, S., (2005). Systematic Parameter Study for Ultra-Fine Fiber Fabrication via Electrospinning Process, Polymer, 46, 6128-6134. doi: http://dx.doi.org/10.1016/j.polymer.2005.05.068

Theron, S. A., Zussman, E., Yarin, A. L., (2004). Experimental Investigation of the Governing Parameters in The Electrospinning of Polymer Solutions, Polymer, 45, 2017-2030. doi: 10.1016/j.polymer.2004.01.024

Thompson, C. J., Chase, G. G., Yarin, A. L., Reneker, D. H. (2007). Effects of Parameters on Nanofiber Diameter Determined from Electrospinning Model, Polymer, 48, 6913-6922. doi: http://dx.doi.org/10.1016/j.polymer.2007.09.017

Weiss, P., Lapkowski, M., Legeros, R. Z., Bouler, J. M., Jean, A., Daculsi, G., (1997). FTIR Spectroscopic Study of an Organic/Mineral Composite for Bone and Dental Substitute Materials, Journal of Materials Science: Materials in Medicine, 8,621-629. doi: 10.1023/A:1018519419539

Yang, F., Both, S. K., Yang, X., Walboomers, X. F., Jansen, J.A. (2009). Development of an Electrospun Nano-Apatite/PCL Composite Membrane for GTR/GBR Application, Acta Biomaterialia, 5, 3295-3304. doi: 10.1016/j.actbio.2009.05.023

Yoshimoto, H., Shin, Y. M., Terai, H., Vacanti, J. P. (2003). A Biodegradable Nanofiber Scaffold by Electrospinning and its Potential for Bone Tissue Engineering, Biomaterials, 24, 2077-2082. doi: http://dx.doi.org/10.1016/S0142-9612(02)00635-X

Zong, X., Bien, H., Chung, C. Y., Yin, L., Fang, D., Hsiao, B. S., Chu, B., Entcheva, E. (2005). Electrospun Fine-Textured Scaffolds for Heart Tissue Constructs, Biomaterials, 26, 5330-5338. doi: 10.1016/j.biomaterials.2005.01.052

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.