LED-Based High-Voltage Lines Warning System

Eldar MUSA
1.476 372

Abstract


LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines), remote measurement of high-voltage line currents, and local illumination of the line area

Keywords


LED, current-to-light conversion, high-voltage power lines, warning, measuring

Full Text:

PDF (Türkçe)


References


Abdul Rahim, R., Chan, K.S., Pang, J.F. and Leong, L.C. (2005). A hardware development for optical tomography system using switch mode fan beam projection. Sensors and Actuators A 120 (2005), 277–290.

Augoustı, A.T., Grattan, K.T.V. and Palmer, A.W. (1988). Visible-LED Pumped Fiber- optic Temperature Sensor. IEEE Transactions on Instrumentation and Measurement, Vol. 37, No. 3, September 1988, 470-472.

Bullough, J.D., Boyce, P.R., Bierman, A., Conway, K.M., Huang, K., O’Rourke, C.P., Hunter, C.M. and Nakata, A. (1999). Luminous Intensity for Traffic Signals: A Scientific Basis for Performance Specifications. Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, 30th November 1999, pp.1-44.

Cahil, B. and El Baradie, M.A. (2001). LED-based fiber-optic sensor for measurement of surface roughness. Journal of Materıals Processing Technology 119 (2001) 299 –306.

Dasgupta, P.K., Eom, I.Y., Morris, K.J. and Li, J. (2003). Light emitting diode-based detectors: Absorbance, fluorescence and spectroelectrochemical, measurements in a planar flow- through cell. Analytica Chimica Acta 500 (2003), 337–364.

Goldmeer, J.S. (2001). A Rugged LED-Based Sensor for Fire Detection. 12th International Conference on Automatic Fire Detection, March 25-28, 2001, National Institute of StandARDS Technology, Gaitheraburg, Maryland, U.S.A., pp. 1-13.

Golnabi, H. (2004). Design and operation of a fiber optic sensor for liquid level detection. Optics and Lasers in Engineering 41 (2004) 801–812

Inan, U.S. and Inan, A.S. (1999). Engineering Electromagnetics. Addison-Wesley, California, 1999, pp.540-545.

Komine, T. and Nakagawa, M. (2003). Integrated System of White LED Visible-Light Communication and Power-Line Communication. IEEE Transactions on Consumer Electronics, Vol. 49, No. 1, February 2003, 71-79.

Kumar, S.P., Lee, T.S., Vallabhan, C.P.G., Nampoori, V.P.N. and Radhakrishnan, P. (2002). Design and development of an LED based fiber optic evanescent wave sensor for simultaneous detection of chromium and nitrite traces in water. Optics Communications, 214, 25–30.

Li, Q., Morris, K.J., Dasgupta, P.K., Raimundo Jr., I.M. and Temkin, H. (2003). Portable flow-injection analyzer with liquid-core waveguide based fluorescence, luminescence, and long path length absorbance detector. Analytica Chimica Acta 479 (2003) 151–165.

Malinen, J., Kansakoski, M., Rikola, R. and Edison, C.G. (1998). LED-based NIR spectrometer module for hand-held and process analyser applications. Sensors and Actuators B 51 (1998), 220–224.

Musa, E. (2008). Optoelektronik, Teori ve Uygulamalar. Nobel Yayın Dağıtım, Ankara, 2008, 592 s.

Musayev, E. (1999). Optoelectronic circuits and Systems. Birsen Press, Istanbul, 1999, 285p. 10




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.