Konuşma Sesleri Steganalizine Gecikmeli Vektör Varyans Metodunu Kullanan Yeni Bir Yaklaşım

1.591 594


We investigate the use of delay vector variance-based features for recorded speech steganalysis. Considering that data hiding within a speech signal distorts the properties of the original speech signal, we design a steganalyzer that uses surrogate data based delay vector variance (DVV) features to detect the existence of a stego-signal. We evaluate the performance of the proposed DVV features as steganalyzer with numerical results


Steganography, steganalysis, speech, chaos, false-neighbors, Lyapunov exponent, surrogate data, delay vector variance

Full Text:

PDF (Türkçe)

DOI: http://dx.doi.org/10.17482/uujfe.19395


Westfeld, A.P. (2003). Detecting Low Embedding Rates, Fabien A. P. Petitcolas (Ed.):

Information Hiding. 5th International Workshop, IH 2002 Noordwijkerhout, pp. 324–339,

Springer-Verlag Berlin Heidelberg..

Fridrich, J. and Goljan, M. (2002). Practical Steganalysis of Digital Images - State of the Art,

Proc. SPIE Photonics West, Vol. 4675, pp. 1—13.

Johnson, M.K., Lyu, S. and Farid, H. (2005). Steganalysis of Recorded Speech, Proc. SPIE

Symposium on Electronic Imaging, San Jose, CA.

Westfeld, A.P. and Pfitzmann, A. (1999). Attacks on steganographic systems, Information

Hiding, LNCS 1768, pp. 61-66, Springer-Verlag Heidelberg.

Koçal, O.H., Yürüklü, E. and Avcıbaş, İ. (2008). Chaotic-type features for Speech

Steganalysis, IEEE Transactions on Information Forensics and Security, Vol. 3, Issue 4, pp. 651- 661.

Altun, O., Sharma, G., Celik, M., Sterling, M., Titlebaum, E. and Bocko, M. (2005).

Morphological Steganalysis of Audio Signals and the Principle of Diminishing Marginal

Distortions”, IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Proceedings. (ICASSP

'05), Vol. 2, pp. 21- 24.

Ozer, H., Avcibas, I.,, Sankur, B. and Memon, N. (2003). Steganalysis of Audio Based on

Audio Quality Metrics, Proc. SPIE, Security and Watermarking of Multimedia Contents V, Vol. 5020, pp. 55-66.

Kokkinos, I. and Maragos, P. (2005). Nonlinear Speech Analysis Using Models for Chaotic

Systems, IEEE Transactions on Speech and Audio Processing, Vol. 13, No. 6, pp. 1098-1109.

Banbrook, M. and McLaughlin, S., (1999). Speech Characterization and Synthesis by

Nonlinear Methods”, IEEE Transactions on Speech and Audio Processing, Vol. 7, No. 1, pp. 1- 17.

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Farmer, J. D. (1992). Testing for

Nonlinearity in Time Series: The Method of Surrogate Data, Physica D 58. pp. 77 - 94.

Gautama, T., Mandic, D.P. and Van Hulle, M.M. (2003). Indications of nonlinear structures

in brain electrical activity, Physical Review E, Vol. 67, No. 046204.

Schreiber, T. and Schmitz, A. (1997). Discrimination power of measures for nonlinearity in

a time series, Phys. Rev. E, Vol:55. pp. 5443-5447.

Gautama, T., Mandic, D.P. and Van Hulle, M.M. (2004). A Novel Method for Determining

the Nature of Time Series, IEEE Transactions On Bıomedical Engineering, Vol. 51, No. 5.

Simmons, G. J. (1984). Prisoners' Problem and the Subliminal Channel (The), CRYPTO83

Advances in Cryptology, pp. 51-67.

Bender, W., Gruhl, D., Morimoto, N. and Lu, A. (1996). Techniques for data hiding, IBM

Systems Journal, vol. 35, no: 3&4, pp. 313-336.

Fridrich, J. and Goljan, M. (2003). Digital Image Steganography Using Stochastic

Modulation, Proc. SPIE Electronic Imaging, Santa Clara, CA, pp. 191-202.

Cox., I. J., Kilian, J., Leighton, F.T. and Shamoon, T. (1997). Secure spread spectrum

watermarking for multimedia, IEEE Tr. Image Proc., vol 6, pp. 1673 – 1687.

www.steganos.com,. Access Date: 23.Nov.2011, Subject: Steganos.

www.petitcolas.net/fabien/ steganography/mp3stego,Access Date: 12.Sep.2011, Subject: Mp3stego.

http://steghide.sourceforge.net, Access Date: 13.Sep.2011, Subject: S. Hetzl.

www.heinz-repp.onlinehome.de/Hide4PGP.htm, Access Date: 12.Sep.2011, Subject: Hide4PGP

http://www.mpi.nl/world/tg/corpora/timit/timit.html, Access Date: 05.Jul.2011, Subject: TIMIT Speech Database

Kennel, M. B. and Abarbanel, H. D. I. (2002). False neighbors and false strands: A reliable minimum embedding dimension algorithm”, Physical Review E, Vol. 66, 026209.

Hilborn, R. (2000). Chaos and Nonlinear Dynamics, Oxford University Press, 2. ed.

Hegger, R., Kantz, H. and Schreiber, T. (1999). Practical Implementation of Nonlinear Time Series Methods: The TISEAN Package, Chaos, Vol. 9, pp. 413-435.

Pudil, P., Novovicova, J. and Kittler, J. (1994). Floating Search Methods in Feature Selection, Pattern Recognition Lett. Vol 15, pp. 1119-1125.

http://eewww.eng.ohio-state.edu/~maj/osu_svm/, Access Date: 24.Sep.2011, Subject: OSU- SVM Matlab Toolbox.

Özer, H., Sankur, B., Memon, N. and Avcıbaş, İ. (2006). Detection of Audio Covert Channels Using Statistical Footprints of Hidden Messages, Digital Signal Processing, Vol.16, pp. 389-401.

Makale 19.11.2013 tarihinde alınmış, 07.12.2013 tarihinde düzeltilmiş, 09.12.2013 tarihinde kabul edilmiştir.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.